MO-G-BRE-01: A Real-Time Virtual Delivery System for Photon Radiotherapy Delivery Monitoring.
نویسندگان
چکیده
PURPOSE Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC) method. METHODS The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM) is calculated. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an inhouse developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes overlaid on the CT image for treatment monitoring. This process continues to monitor the 3D dose distribution in real-time. RESULTS An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the two cases, respectively. The average time per MC calculation is 0.1sec with <2% relative uncertainty. The update frequency of ∼10Hz is considered as real time. CONCLUSION By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.
منابع مشابه
Photon Dosimetry Quality Audit of Radiotherapy Centers in Iran: SSDL's On-Site Visit Program During 2007-2017
Introduction: A dosimetric audit is a quality assurance process (QA) that allows the accuracy of dosimetric and geometric precision to accurately control the delivery of doses. They can be used to evaluate the accuracy of radiation delivery at different radiotherapy centers. Differences in prescriptive doses, depending on the severity of the differences, have potential conseque...
متن کاملA study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates
Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...
متن کاملImprovement of dose delivery with loading of tumor with gold nanoparticles in orthovoltage radiotherapy
Introduction: To enhance the dose to tumor, the use of high atomic number elements has been proposed. Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in tumor when the tumor is irradiated by typical monoenergetic X-ray beams by considering homogeneous and inhomogeneous distributions of gold nanoparticles (GNPs)...
متن کاملEvaluation of Ferrous-Agarose-Xylenol Gel Properties in Radiation Dosimetry
Background: Over recent decades, modern protocols of external beam radioÂtherapy and radiation techniques such as intensity-modulated radiotherapy (IMRT) have been developed. These methods are extremely sensitive to errors in treatment delivery, so that it is essential to apply a high resolution 3D dosimetry system that has high sensitivity and is capable of measuring and verifying the complex...
متن کاملDosimetric Comparison between 6MV Flattened Filter and Flattening Filter Free Photon Beams in the Treatment of Glioblastoma with IMRT Technique: A Treatment Planning Study
Introduction: The present study evaluated the dosimetric comparison between 6MV flattened filter (FF) and flattening filter-free (FFF) photon beams in intensity-modulated radiation therapy (IMRT) technique for the treatment of glioblastoma (GBM) patients. Material and Methods: The present study was conducted on 10 patients with GBM previously...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 41 6 شماره
صفحات -
تاریخ انتشار 2014